首页> 外文OA文献 >LoPub: High-Dimensional Crowdsourced Data Publication with Local Differential Privacy
【2h】

LoPub: High-Dimensional Crowdsourced Data Publication with Local Differential Privacy

机译:Lopub:具有本地的高维众包数据发布   差异隐私

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-dimensional crowdsourced data collected from a large number of usersproduces rich knowledge for our society. However, it also brings unprecedentedprivacy threats to participants. Local privacy, a variant of differentialprivacy, is proposed as a means to eliminate the privacy concern.Unfortunately, achieving local privacy on high-dimensional crowdsourced dataraises great challenges on both efficiency and effectiveness. Here, based on EMand Lasso regression, we propose efficient multi-dimensional joint distributionestimation algorithms with local privacy. Then, we develop a Locallyprivacy-preserving high-dimensional data Publication algorithm, LoPub, bytaking advantage of our distribution estimation techniques. In particular, bothcorrelations and joint distribution among multiple attributes can be identifiedto reduce the dimension of crowdsourced data, thus achieving both efficiencyand effectiveness in locally private high-dimensional data publication.Extensive experiments on real-world datasets demonstrated that the efficiencyof our multivariate distribution estimation scheme and confirm theeffectiveness of our LoPub scheme in generating approximate datasets with localprivacy.
机译:从大量用户那里收集的高维众包数据为我们的社会提供了丰富的知识。但是,这也给参与者带来了前所未有的隐私威胁。提议将本地隐私作为差异隐私的一种变体,作为消除隐私问题的一种方法。不幸的是,在高维众包数据上实现本地隐私对效率和有效性提出了巨大挑战。在此,基于EM和Lasso回归,我们提出了具有局部隐私的高效多维联合分布估计算法。然后,我们利用我们的分布估计技术,开发了一种保留本地隐私的高维数据发布算法LoPub。特别是,可以识别多个属性之间的相关性和联合分布,以减少众包数据的维数,从而在局部私有高维数据发布中同时实现效率和有效性。并确认我们的LoPub方案在生成具有本地隐私权的近似数据集方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号